Pre-class Warm-up!!!
Which of the following systems of equations is equivalent to the 2 nd order equation

$$
x^{\prime \prime}-3 x^{\prime}+2 x=0 ?
$$

a. $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -2 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
b. $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{ll}0 & 2 \\ 1 & 3\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
c. $\left[\begin{array}{l}x \\ y\end{array}\right]^{\prime}=\left[\begin{array}{cc}-3 & 2 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
d. None of the above.

$$
\begin{aligned}
& y=x^{\prime} \quad y^{\prime}=3 x^{\prime}-2 x=3 y-2 x \\
& {\left[\begin{array}{l}
x \\
y
\end{array}\right]^{\prime}=\left[\begin{array}{c}
y \\
3 y-2 x
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]}
\end{aligned}
$$

We have the characteristic polynomial $r^{2}-3 r+2$ (of the die.)
and the characteristic polynomial

$$
\begin{aligned}
& \text { of }\left[\begin{array}{cc}
01 \\
-2 & 3
\end{array}\right] \operatorname{det}\left[\begin{array}{ll}
-\lambda & -\lambda \\
-2 & 3-\lambda
\end{array}\right] \\
& =-\lambda(3-\lambda)+2=\lambda^{2}-3 \lambda+2 .
\end{aligned}
$$

They ore the come!

Section 7.2 Matrices and linear systems

We learn about:

- writing a linear system of equations in vector form
- several theorems similar to ones for higher order d.e.'s we have already seen
- the Wronskian again.

A system of equations $\mathrm{X}^{\prime}=\mathrm{PX}+\mathrm{F}$ is homogeneous if

$$
F=\left[\begin{array}{l}
0 \\
j \\
0
\end{array}\right]=0=0
$$

Taking derivatives is a linear operator: If X_{1}, X_{2} are vector valued functions, c_{2}, c_{2} are scalars then

$$
\begin{aligned}
& \left(c_{1} x_{2}+c_{2} x_{2}\right)^{\prime}=c_{1} X_{1}^{\prime}+c_{2} X_{2}^{\prime} \\
& \quad=P\left(c_{1} X_{1}+c_{2} x_{2}\right)=c_{1} P X_{1}+c_{2} P X_{2}
\end{aligned}
$$

The principle of superposition of solutions:
If X_{1}, X_{2} are solutions to a homogeneous system then so is

$$
c_{1} x_{1}+c_{2} x_{2}
$$

$\sqrt{\text { Theorem }} 1$ The solutions to a homogeneous system form a vector space.

Theorem 3 The space has dimension n if P and F are continuous.

The Wronskian of vector valued functions $X _1, \ldots, X _n$ is

$$
\operatorname{det}\left[X_{1}|\cdots| X_{n}\right]=W(t)
$$

Theorem 2
(a) If $X _1, \ldots, X _n$ are dependent then $W=0$.
(b) If they are also solutions of a homogeneous linear system and they are independent, then W is never 0 .
Proof (a) If they are dependent then there is a nonzero de fendence relation between the columns of $\left[x_{1} \mid \cdots\left(x_{n}\right]\right.$ (one is a linear combination of some otter)
This means the dec. is 0 .

The connection with the Wronskian of scalarvalued functions $f _1, \ldots, f _n$.
That Wronskian was
$\operatorname{det}\left[\begin{array}{cc}f_{1} & f_{n} \\ F_{1}^{\prime} & \\ \vdots & \\ f_{1}^{(n-)} & f_{n}^{(n-i)}\end{array}\right]$

In converting from a high order die. in one variable we introduced variables $x_{1}=x, x_{2}=x_{1}^{\prime}, x_{3}=x_{2}^{\prime}$
producing vectors $\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right]=\left(\begin{array}{c}x \\ x^{\prime} \\ x^{4} \\ x^{(n-1)}\end{array}\right)$
The two Wronskians are the same when we convert a high order die. in one vanable to a first order system.

Page 384 question 14.
Verify that the given vectors are solutions of the differential equation. Use the Wronskian to show that they are independent.

$$
\underbrace{X^{\prime}=\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right] x}_{d e}, \quad \underbrace{x_{1}=\left[\begin{array}{c}
e^{3 t} \\
3 e^{3 t}
\end{array}\right], X_{2}=\left[\begin{array}{c}
2 e^{-2 t} \\
e^{-2 t}
\end{array}\right]}_{\text {solutions }}]
$$

Sohetion: Check X_{1} is a solution!

$$
\begin{aligned}
{\left[\begin{array}{l}
3 e^{3 t} \\
9 e^{3 t}
\end{array}\right] } & ?\left[\begin{array}{ll}
-3 & 2 \\
-3 & 4
\end{array}\right]\left[\begin{array}{c}
e^{3 t} \\
3 e^{3 t}
\end{array}\right]=\left[\begin{array}{l}
-3+6) e^{3 t} \\
\left(-3+12 e^{3 t}\right.
\end{array}\right] \\
W(t) & =\operatorname{det}\left[\begin{array}{cc}
e^{3 t} & 2 e^{-2 t} \\
3 e^{3 t} & e^{-2 t}
\end{array}\right] \\
& =e^{t}-6 e^{t}=-5 e^{t}
\end{aligned}
$$

This is not the zero function. In fact it is never 0 ,
Thus X_{1}, X_{2} are independent

Page 384 question 23.
Find a particular solution of the system in question 14 that satisfies $x_{-} 1(0)=0, x_{-} 2(0)=5$ component $1^{\prime \prime}$ of the solution cost 2
Solution: We look for a solution

$$
\begin{aligned}
& A\left[\begin{array}{l}
e^{3 t} \\
3 e^{3 t}
\end{array}\right]+B\left[\begin{array}{l}
2 e^{-2 t} \\
e^{-2 t}
\end{array}\right] . \operatorname{Put} t=0 \\
& A\left[\begin{array}{l}
1 \\
3
\end{array}\right]+B\left[\begin{array}{l}
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right],\left[\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right]\left[\begin{array}{l}
A \\
B
\end{array}\right]=\left[\begin{array}{l}
0 \\
5
\end{array}\right] \\
& {\left[\begin{array}{l}
A \\
B
\end{array}\right]=\frac{-1}{5}\left[\begin{array}{cc}
1 & -2 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
5
\end{array}\right]=-\frac{1}{5}\left[\begin{array}{c}
-10 \\
5
\end{array}\right]=\left[\begin{array}{l}
2 \\
-1
\end{array}\right]}
\end{aligned}
$$

The particular solution is

$$
\left[\begin{array}{l}
2 e^{3 t}-2 e^{-2 t} \\
6 e^{3 t}-e^{-2 t}
\end{array}\right]
$$

Question.
What is the Wronskian of the functions

$$
\left[\begin{array}{c}
\cos 2 t \\
\sin 2 t
\end{array}\right],\left[\begin{array}{c}
\sin 2 t \\
-\cos 2 t
\end{array}\right] ?
$$

a. 1
b. -1
C. 0
d. $\cos ^{2} 2 t-\sin ^{2} 2 t$
e. None of the above.

Theorem 1 of section 7.1.
In the first order linear system $X^{\prime}=P X+F$ if the functions P and F are continuous then, given numbers $a, b _1, \ldots, b _n$, there is a unique solution satisfying

$$
x _1(a)=b _1, x _2(a)=b _2, \ldots, x _n(a)=b _n .
$$

We conclude:

Theorem 3.
The space of solutions of a homogeneous first order linear system in n variables has dimension n .

Deduction of this: Take a sails $X_{1, \ldots,} X_{d}$ for the space of solutions.

For each $B=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{n}\end{array}\right]$ there is a unique linear combinatur

$$
\begin{aligned}
& c_{1} X_{1}(a)+\cdots+c_{d} X_{d}(a)=B \\
& {\left[X_{1}|\cdots| X_{d}\right](a)\left[\begin{array}{l}
c_{1} \\
c_{d}
\end{array}\right]=B}
\end{aligned}
$$

hat a unique unique solution in $\left(c_{1}, \ldots, c_{d}\right)$.
It follows that $\left[x_{1}\left[\cdots-1 x_{d}\right]\right.$ is square, so $d=n$,

